خاصیت ارگودیک از ابرگروه های میانگین پذیر

thesis
abstract

فرض می کنیم kیک ابرگروه با اندازه هار باشد.مشابه حالت گروه ها،میانگین پذیری چپ توپولوژیک با ایستایی راست توپولوژیک معادلند.براساس این واقعیت،در این مقاله ما میانگین پذیری روی ابرگروه ها رابا یک خاصیت ارگودیک که نوع دیگری از شرط ریدر-گلیکس برگ از مبحث گروه هاست مشخص می کنیم.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

انقباض های ارگودیک برای نیم گروه های میانگین پذیر در فضای باناخ با ساختار نرمال

در این پایان نامه (با توجه به مقاله نوشته شده توسط آ قای شهرام سعیدی تحت عنوان انقباض های ارگودیک برای نیم گروه های میانگین پذیردرفضا ی باناخ با ساختارنرمال) وجود انقباض ناگسترده روی مجموعه ای از نقاط ثابت مشترک را مورد بحث قرارمی دهیم. فرض کنیم اگر?={t_s ?s ?s} نیم گروه میانگین پذیرازنگاشت های ناگسترده روی زیرمجموعه محدب وبستهcدرفضای باناخ انعکاسیeباشرطf(?)(مجموعهنقاط ثابت مشترک ? ناتهی باشد. ...

نیمگروههای میانگین پذیر قوی و خاصیت نقطه ثابت

در این پایان نامه پس از بررسی میانگین پذیری چپ قوی روی نیمگروه ها، ساختار نیمگروه های میانگین پذیر چپ قوی مورد مطالعه قرار گرفته و به طبقه بندی نیمگروه های میانگین پذیر و ارتباط بین آنها در شرایط مختلف پرداخته می شود.همچنین راه های ساختن نیمگروه های میانگین پذیر چپ قوی به کمک عمل ضرب و میانگین پذیری چپ قوی روی نیمگروه های فشرده و گسسته بررسی شده است. در ادامه، به بررسی خاصیت نقطه ثابت و ارتباط ...

نظریۀ ارگودیک: دستگاه های دینامیکی از دیدگاه آنالیز تابعی

دستگاه های دینامیکی یکی از شاخه های مهم و کاربردی ریاضیات است که هم ریشه در علوم دیگر مانند فیزیک دارد و هم کاربردهای فراوانی در این علوم. گر چه نظریۀ دستگاه های دینامیکی خاستگاه هندسی داشته است، در مسیر تحول خود از ابزار های آنالیز تابعی بهره گرفته است و آن چنان با این شاخه از ریاضیات در هم آمیخته که به سختی می توان آنها را از یکدیگر جدا دانست. نظریۀ ارگودیک بخشی از دستگاه های دینامیکی است که ...

full text

قضایای ارگودیک میانگین برای نیم گروه های تقریبا متناوب

ابتدا توابع تقریبا متناوب و تقریبا متناوب ضعیف و میانگین پذیری و مفهوم تور پایای مجانبی وتور پایای مجانبی قوی از میانگین ها معرفی گشته اند.قضایای ارگودیک میانگین برای این توابع بیان و اثبات شدند.سپس مفهوم نیم گروه های تقریبا متناوب مطالعه شد.قضایای ارگودیک میانگین برای نیم گروه های تقریبا متناوب نیز بیان واثبات گردید.همچنین رابطه تقریبا متناوب بودن یک نیم گروه از توابع و همپیوستگیشان بررسی شد و...

15 صفحه اول

ویژگی سایه زنی میانگین برای نگاشت های انبساطی و ارتباط آن با ارگودیک قوی

در این پایان نامه ویژگیهای تعدی و ارگودیک قوی که از مفاهیم مهم در سیستمهای دینامیکی هستند مورد بررسی قرار میگیرد. در حقیقت بیان میشود که ویژگی سایه زنی و سایه زنی میانگین برای توابع پیوسته روی یک فضای متریک فشرده سبب می شود که این توابع تعدی و یا ارگودیک قوی شوند

15 صفحه اول

جبرهای باناخ تقریباً میانگین پذیر

جبر باناخ a به طور تقریبی میانگین پذیر است هرگاه برای هر a-مدول x، هر اشتقاق پیوسته *^ d : a → x تقریباً درونی باشد. در این پایان نامه نشان می دهیم که تقریباً میانگین پذیری و تقریباً انقباض پذیری خواص یکسانی دارند.همچنین نشان می دهیم که به طور یکنواخت میانگین پذیری و به طور یکنواخت میانگین پذیری تقریبی خواص مشابهی دارند. نتایج به دست آمده روی جبرهای باناخ دنباله ای، جبرهای لیپ شیتس و جبرهای برلینگ...

15 صفحه اول

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه سمنان

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023